MASSIVE DISAMBIGUATION OF LARGE TEXIC CORPPORA WIIH FLEXIBLE CATEGORIAL GRAMMAR

Ton van der WOUDEN (CELEX/INL) Dirk HEYLEN (INL)
INL
Postbus 9515
2300 ra Leiden
The Netherlands

ABSTRACT

A new method of automatic lexical disambiguation of big texts is described, using recent prooftheoretical results from the theory of categorial grammar.

0. Introduction

The Institute of Dutch Lexicology (INL), spansoned by the Dutch and the Belgian governments, consists of two departments. One of the tasks of the Thesaurus, one of the departments, is to build a database for lexicological research. This database is a, potentially infinite, set of texts. The aim is to supply a representative and, if possible, complete overview of contemporary (since 1970) standand Dutch. In order to access the material, an efficient database architecture and application software were developed. At this moment (February 1988) the INL corpus is the most representative corpus of the Dutch language; it contains over 45 million tokens, over 800,000 word types.

The INL lexical database is not an aim in itself: it is meant to be a tool for specific projects. One of the purposes of the database is to form the raw input for a new generation of dictionaries. The database is growing, and it is not realistic to go on increasing it without making it possible to use such a rich source of infomation. Therefore, a short time goal is to make all the words in the database available for nesearch punposes, on the one hand by making efficient and powerful application software, on the other hand by enriching the material. Automatic morphological analysis has now been carried out and the nesults will scon be incorporated into the database. One level hlgher, we are interested in the syntactic
analysis of the sentences of the connus One shonid not think of an on-line parsex only. For the process of lemmatization an effective disambiguation poocedure is necesssary as well. To this end parsers are being developed that winl socn be tested on the corpus. As was the case for the morphological analyzer, the syntactic parser is an implementation of a categorial calculus. The construction of and philosophy behind the lambek categorlal parser we use for the disimbiguation and syntactic analysis is the topic of this paper ${ }^{1}$.

1. A note on ambiguity in Categorial Grammans

Each linguistic model or framework whatsoever is confronted with the problem of ambigucus lexical type assigrments, a phenomenon inherent to NL. Whatever way ore deals with it as far as repmesentation is concerned and whatever neat solutions one comes up with, the fact remains that (1) the phenomenon will not disappear, but (2) the explosions it gives rise to will cause (often irreparable) damage to (otherwise) neatly conceived syntactic parsers or analyzers. Categorial grammars, abiding by the centricity of the Lexicon, may seem by nature to be the finst victims of this phenomenon. Some categorialists ${ }^{2}$ try to cincumivent the problens by imposing inherently umotivated constraints on otherwise rigidly defined flexible calculi. Another way to go about, however, is to take a closer look at some of the restrictions the calculus imposes indinectly, i.e. at some of thes invariants that come along naturaily, but may remain unnoticed at first sight ${ }^{3}$. Intenesting invariants may act as greedy scissons, fruning away many of the useless branches of the seawch tree. Categorial gramars enoode all syntactic infomation in the lexicon. The effect of this strategy an the presence of ambiguities can bs gathened if one would take an ordinary phrase
structure grammac and turn it into a categorial one. What happens is that for every category in the PS grammex one gets a set of categories in the Categorlel grammar. On the avarage, the number of now categorles equals the number of occurnences of the old category in the PS rules. A lexical element that is not at all aubiguous as far as syntactic category assignment is ouncemed, in PSG, will alnost certainily becone ambiguous in Co. Still, we claim that effective, 1.e. fast, disanbiguation, iss possible with CG. The rationale behtind this claim 1ss that effective disambiguation does not depend as ruch on the degree of ambiguity, but finst and sonemost on the nature of the disambiguation method theneas ambiguity is damaging to classical parse procyedures because thene ane no intrinsic moperties of the system that can deal with it, almosi the neverse is thue of categorial parsens when fuil beneflt is made of their defining chacacteristics. In onder to appreciate these statements, the best thing to do is look at a spestific implementation of this idea.

a. The rembel calculus

In this section we would like to present a categorial reduction system which is analogous to the implicational fragment of propositional logic. We will present it as a calculus, and will 1imit ourselves to the fomal description, thus ignoring semantic interpretation (which is not inmediately relevant for our pmpase at hand).

Scme definitions

Let BASCAT be a finite set of atomic categories and CCAN a finite set of category foming connectivas. Then CAT (the set of all categories) is the inductive closure of BASCAI under CONN, i.e. the smallest set such that (i) BASCAT is a subset of CAT, and (ii) if X, Y ane members: of CAT and ins a member of CONN, then $(X \mid Y)$ is a member of CAT.

So one could take BASCAT to be \{S, N, A, T, P\} and OXN $\{/, \, *\}$ (these ane called right divistion, left division and product, respectively). Some of the members of CAT ane: $\{N,(M S),((N / N) * T),(S /(P \backslash(N / S))), \ldots\}$.
A. compliax category ($X \mid Y$) consists of three Anamediate suboomponents: X and Y, which are chanselves categories, and the connective. When the comsective is '/' or ' \backslash ', the complek category is a tunctor. Functor categories ane associated with inompleise expressions: they will form an oxpression of category Y (nesult) with an expressicn of category X (argument) ${ }^{4}$. In the case of right division, the angument has to be found to
the right of the functor category, whereas in the case of left division, the argument has to be found to the left'. The prochuct connective ' $*$ ' is to be interpneted as a concatenation operator, i.e. a product category ($X * Y$) is to be assoclated with an expression which is the concatenation of an expression of category X and an expression of category Y in that order.

Rechuction rules

A spectfic categorial grammar is characterized by the choice of basic categories and connectives on the one hand, and on the set of reduction rules on the other. The system of reduction rules says how categories can be combined to form langex constituents. The application rule which coublines a functor with domain X and range Y with a suitable argument of category X to give a Y, is only one of the possible rectuction rules. Instead of talring a set of rectuction laws as primitive axioms, we will investigate the categorial reduction system as a calculus, where the rectuction laws can be consldered theorems that follow from a set of axioms and a set of inference rules. Next we will see that the parsing of a syntagm is really the same thing, in other words, attempting a proof for a theorem.

Secquents

Before we define the axioms and inference rules of the calculus, we need to define the notion of sequent ${ }^{6}$.

A sequent is a pair (G, D) of finite (possibly empty) sequences $G=\left[A_{1} \ldots A_{n}\right], D=$ [$\left.\mathrm{B}_{1}, \ldots, \mathrm{~B}_{\mathrm{n}}\right]$ of categories. For categorial L sequents, we nequire G to be non-empty and $n=1$. For the sequent (G, D) we write $G \Rightarrow D$. The sequence G is called the antecedent, D the succedent. For simplicity square brackets and comma's ane often left out.

Axions and inference rules
(1) The axtoms of L ane sequents of the fom $X \Rightarrow$ X.
(2) Inference rules of L : X, Y and Z are categories, P, T, Q, U, V ace sequences of: categories, whene P, T and Q are non-empty.

```
[/R] T }=>\textrm{Y}/\textrm{X}\mathrm{ if }T,Y Y # X
[\R] T }=>\textrm{Y}X\mathrm{ if Y,T }=>\textrm{X
[/L] U,Y/X,T,V => Z fif TT }=>\textrm{Y
    and }u,x,v=>
[\I,] U,T,Y,YX,V }=>\textrm{Z}\mathrm{ if }\textrm{T}=>\textrm{Y
    and U,X,V => Z
[*L] U,X*Y,V }=>=Z\mathrm{ iff U,X,Y,V }=>\textrm{Z
[*R] P,Q => X*Y if P }=>X\mathrm{ and Q m Y
```

Together, axicins and inference rules define the theorems of a categorial. calculus. Suppose we have a sequent s, to find out whether it is a theonem or not we have to apply several of the inference rules above till nothing but axicms remain. Ass one max bave noticed, all these rules involve the removal of a connective in some category. Let's pacaphrase the $[/ L]$ rule by way of example. It says: to find out whether a sequent with scme functor category Y / X is a theorem, identify a sequence of categories that follow this category, and see whether $Y \Rightarrow$ the identified sequence is a theoren, and what preceded the category $+x+$ what followed the sequence \Rightarrow old succedent is a theonem.
In the following example we present a proof with the relevant category printed in bold and the identified sequence underlined.

```
a/b,a/(e/(f/a)),d, Q,f => b [/L]
    a => a
    d => d
        e => e
            a/b,f/a, f}=>
            f =f
                    a/b,a}=>>
                    a/b,a a mb
                    b }=>\textrm{b
        [AKIOM]
        [/L]
        [AXIOM]
        [/L]
        [AXIOM]
        [/L]
    [AXIOM]
    [AXIOM]
    OFD
```

If we could find an efficient automatic decision procedure that would tell us whether a certain sequent is either a theorem or not, then we would have an efficient parser as well. The idea being, that the succerdent represents something like a sentence (the categories of the words that make it $u p$) and the antecedent the S (sentence) category. In the next section we will discuss an implementation of the declsion procedure.

3. The 'theorem prover, allas parser

An algorithm to prove a theonem oould go as follows.
Given: a sequent with n categories: $n-1$ in antecedent, 1 in succedent.
Start at the the first category of the succusdent. If this is a functor, pick the relevant inferenco
rule that will eliminate the comective. If the nule tolis you to identify a part of the sequent to one of the sides of the category, then flist take thits to be one category. See whether you can prove the resulting sequent(s) (the seguent(s) in the if.part of the inference rule). If the identification dons not yield a rasult (i.e. in necursively calling the proceiture, the botton of oniy axrions remaining is not neachsod), then take two categories and see if this does the trick. Cont:Ime adding categories until you have a poote or thate are ro categoriles left. In the latter case, nothling is lost yet, becausse one could also have taken the second, or thind functor to start the proof with. If in the end thene ane m mone furctons left to start the elimination with, then the trwonem camot be proven and one can even say that it is falso ${ }^{7}$.
Clearly, this procedure might take scone time to decide on the validity of a sequent, one might hope that theorems are pacven rapidly, but when the sequents ane false, a lot of work has to be dorie. Fortunately enough, there is a simple way to prune away some branches of the search tree that ane guaranteed to lead to failune. 'there is a necessary fomal condition that holds of valid theorems which is easy to detect. If a sequent does not have this fommal characteristic, it cannot be a theonem. Even if the inputted sequent does have the requined characteristic, in the process of proving, there will be a lot of subproofs that need not be carried out because they will fail inmediately. This fomal characteristic or invariant is known as var Benthem's Count, or Count for short. It counts the number of positive (range) and negative (domain) occurrences of a basic category X in an arbitrary category, basic or complex. It may be defined as follows.

$$
\begin{aligned}
& \operatorname{count}(X, X)=1, \text { if } X \text { is a member of BASCAT } \\
& \operatorname{count}(X, Y)=0, \text { if } X, Y \text { membens of BASCA1, } \\
& X\rangle Y \\
& \operatorname{count}(X, Y / Z)=\operatorname{count}(X, Z)-\operatorname{count}(X, Y) \\
& \operatorname{count}(X, Y \backslash Z)=\operatorname{count}(X, Z)-\operatorname{count}(X, Y) \\
& \operatorname{count}(X, Y * Z)=\operatorname{count}(X, Y)+\operatorname{count}(X, Z)
\end{aligned}
$$

Generallzed to sequances of categrocles, the xcoumt of a sequence, X being a category, is the sum of the X-counts of the elements in the sequance.

```
\operatorname{count}(X,[\mp@subsup{Y}{1}{},\ldots,\mp@subsup{Y}{n}{}])=\operatorname{count}(X,\mp@subsup{Y}{1}{})+\ldots
    +\operatorname{count}(X, X Y )
```

re was puoven by Van Benthen (1986) that the Oonde Gunvition is an invarlant over dorivations ${ }^{4}$. This neans that no swquat is a theoren if the cotut. walues of the antecedent atifer frrat the cxhot, valuas oft tho buccedent for any basic oategory. Thes following tigume showe how the cout values hox the category ($\mathrm{PP} /(\mathbb{N P} \backslash \mathrm{F})$) can be onmouted for onch of The bustur eategocless $\mathrm{S}, \mathrm{NP}, \mathrm{N}, \mathrm{AP}$ and PD.

Io :res the usonulmess of this invarlant take a noun ndrase like de groel van het hame ('the georth of the hatry). Apart from de, ail. words in thes Ne ans anbiguous. Whe Cactesian pooduct of the ambiguities gives 12 different conbinatory possibulittess

$$
\begin{aligned}
& (\mathrm{N} / \mathrm{LP}), \mathrm{N},(\mathrm{NP} / \mathrm{PY}),(\mathrm{N} / \mathrm{NP}), \mathrm{NP} \\
& \text { (} \mathrm{N} / \mathrm{MP} \text {), } \mathrm{N}_{,}(\mathrm{NP} / \mathrm{PP}),(\mathrm{N} / \mathrm{NP}),(\mathrm{N} / \mathrm{NP}) \\
& (\mathrm{N} / \mathrm{NP}), \mathrm{N},(\mathrm{NP} / \mathrm{PP}),(\mathrm{N} / \mathrm{NP}), \mathrm{N}
\end{aligned}
$$

$$
\begin{aligned}
& (N / N P), N,(N P /(N \backslash N)),(N / N P),(N / N P)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (} \mathrm{N} / \mathrm{NP} \text {), (} \mathrm{NP} \backslash \mathrm{~S} \text {), (} \mathrm{NP} / \mathrm{PP})_{,}(\mathrm{N} / \mathrm{NP}), \mathrm{NP}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (} \mathrm{N} / \mathrm{NP} \mathrm{P}),(\mathrm{NP} \backslash \mathrm{~S}),(\mathrm{NP} / \mathrm{PP}),(\mathrm{N} / \mathrm{NP}), \mathrm{N} \\
& (N / N P),(N P \backslash S),(N P /(N \backslash N)),(N / N P), N P
\end{aligned}
$$

$$
\begin{aligned}
& (N / N P),(N P \backslash S),(N P /(N / N)),(N / N P), N
\end{aligned}
$$

To figure out whethex this phrase is a moun phrase, one whild have to try to build a (NP) parse tres for each of these twolve possible combinatiens of category asisigments. Using the Coment inveciant, however, one tmows beforehand that one aud coly one of these combinations (glven in bold face) could nosstbly be parsed as a noun phasase, so that parsing itself becomes superfluous in this cerse. The following figure shows the count velues for the concect asstgnement.

N / Ne	10	1	-1	0]
N	[0	0	1	0		J
($\mathrm{NP} /(\mathrm{M} N)$)	[0	-1	0	0		I
($\mathrm{N} / \mathrm{LTP}$)	[0	1	-1	0		d
W	10	0	1	0		J
4	10	1	0	0]
N:	[0	1	0	0]

Whe zeader can verlfy for hinuself that none of the other combinations satifles the count invariant.

4. 'ine implementation

It is olovious that the procedume just presented is a perfoot means to lay hards on the ratios of the fremuencies of lextcally ambiguous wonds, given a ompus and a lexlon with categorial infomation. so, In ordex to derive these figures for the words In the CRIEX database, sentences of the INL corpus are inputted in a cascade of disambiguating inculus. The implementation of this Lambek:Gentren alsambiguator is straightforward as it involves conly simple matchings and listmanipulations. The role of the disanbiguator in the process of disanbiguating the 4 corpus can be mead off from the following figune.

$\begin{aligned} & \text { omrys } \quad \text { set of sentences } \\ & \Rightarrow \text { sentence selection } \end{aligned}$	
SENTENKE (1) : list of words	
\cdots category assigment / Lexical lookup	
SENTENCE (2) : list of words + categories	
\Rightarrow genderate combinations	
COMBINALTONS : 1ist of categories	
\Rightarrow test combinattons	
(1) Count	
(2) Parse / prowe	
RESULI	: grammatical lists of categories

Given a corpus sentence, the syrtactic categories of all the words it contains are looked up in a pansing lexiocn derlved from the lexical database. When all. combinations of categories have besen computed, each is tested by the Count module to reduce the number of possible combinations of Initial category assignments. In the most successful case, this reduction produces only one possible oombination, fmplying that all lexical materlal in this sertence is disambiguated. In most otherc cases, only a small percentage of the coriginal number of possible combinations of lexical assigments is left over; these are handed over to the Gentzen Proof Machine which will find out which of the nemalning assignments fall to combine to a grammatical sentence.

Notes

1. Much of the work described here is based on neseanch by Michael Moortgat. See e.g. his (1987a, 1987b, 1988)
2. e.g. Wittenbung (1987), Steedman (1987).
3. Instead of theonems deducible from the calculus they are often facts that can be proven of the calculus as such, outside the calculus (metatheorems in other words).
4. This combination is called application.
5. Notice that we will use the (argument connective result) notation, no matter what the directionality of the functor.
6. We will present the sequent calculus, which Lambek adapted from Gentzen's work on logic. See Lambek (1958).
7. Because of space limitations we will not attempt to show the validity of this procedure.
8. Proof omitted for space's sake.

